资源类型

期刊论文 524

会议视频 19

年份

2023 61

2022 49

2021 57

2020 41

2019 32

2018 21

2017 12

2016 27

2015 19

2014 21

2013 16

2012 21

2011 26

2010 18

2009 17

2008 23

2007 25

2006 12

2005 5

2004 3

展开 ︾

关键词

机理 9

机制 3

2021全球工程前沿 2

DX桩 2

Maradbcm算法 2

优化设计 2

作用机制 2

动力学 2

医学 2

医学教育 2

原子力显微镜 2

双库协同机制 2

失效概率 2

工程前沿 2

木质素 2

环境 2

绿色化工 2

肠道菌群 2

能源 2

展开 ︾

检索范围:

排序: 展示方式:

A study on bearing characteristic and failure mechanism of thin-walled structure of a prefabricated subway

Lianjin TAO; Cheng SHI; Peng DING; Sicheng LI; Shang WU; Yan BAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 359-377 doi: 10.1007/s11709-022-0816-2

摘要: In order to study the bearing performance of a new type of prefabricated subway station structure (PSSS), firstly, a three-dimensional finite element model of the PSSS was established to study the nonlinear mechanics and deformation performance. Secondly, the bearing mechanism of a PSSS was investigated in detail. Finally, the development law of damages to a thin-walled prefabricated component and the failure evolution mechanism of a PSSS were discussed. The results showed that this new type of the PSSS had good bearing capacity. The top arch structure was a three-hinged arch bearing system, and the enclosure structure and the substructure were respectively used as the horizontal and vertical support systems of the three-hinged arch structure to ensure the integrity and stability of the overall structure. Moreover, the tongue-and-groove joints could effectively transmit the internal force between the components and keep the components deformed in harmony. The rigidity degradation of the PSSS caused by the accumulation of damages to the spandrel, hance, arch foot, and enclosure structure was the main reason of its loss of bearing capacity. The existing thin-walled components design had significant advantages in weight reduction, concrete temperature control, components hoisting, transportation and assembly construction, which achieved a good balance between safety, usability and economy.

关键词: prefabricated subway station     thin-walled components     finite element analysis     bearing characteristic     failure mechanism    

Bending failure performance of a shield tunnel segment based on full-scale test and numerical analysis

《结构与土木工程前沿(英文)》   页码 1033-1046 doi: 10.1007/s11709-023-0973-y

摘要: This study focuses on the bending failure performance of a shield tunnel segment. A full-scale test was conducted to investigate deformation and failure characteristics. During the loading, the bending failure process can be divided into four stages: the elastic stage, working stage with cracks, failure stage, and ultimate stage. The characteristic loads between contiguous stages are the cracking, failure, and ultimate loads. A numerical model corresponding to the test was established using the elastoplastic damage constitutive model of concrete. After a comparative analysis of the simulation and test results, parametric studies were performed to discuss the influence of the reinforcement ratio and proportion of tensile longitudinal reinforcement on the bearing capacity. The results indicated that the change in the reinforcement ratio and the proportion of tensile longitudinal reinforcement had little effect on the cracking load but significantly influenced the failure and ultimate loads of the segment. It is suggested that in the reinforcement design of the subway segment, the reinforcement ratio and the proportion of tensile longitudinal reinforcement can be chosen in the range of 0.7%–1.2% and 49%–55%, respectively, allowing the segment to effectively use the reinforcement and exert the design strength, thereby improving the bearing capacity of the segment.

关键词: shield tunnel     bearing capacity     failure mechanism     segment reinforcement    

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield tunnels

《结构与土木工程前沿(英文)》   页码 901-914 doi: 10.1007/s11709-023-0915-8

摘要: The integrity and bearing capacity of segment joints in shield tunnels are associated closely with the mechanical properties of the joints. This study focuses on the mechanical characteristics and mechanism of a bolted circumferential joint during the entire bearing process. Simplified analytical algorithms for four stress stages are established to describe the bearing behaviors of the joint under a compressive bending load. A height adjustment coefficient, α, for the outer concrete compression zone is introduced into a simplified analytical model. Factors affecting α are determined, and the degree of influence of these factors is investigated via orthogonal numerical simulations. The numerical results show that α can be specified as approximately 0.2 for most metro shield tunnels in China. Subsequently, a case study is performed to verify the rationality of the simplified theoretical analysis for the segment joint via numerical simulations and experiments. Using the proposed simplified analytical algorithms, a parametric investigation is conducted to discuss the factors affecting the ultimate compressive bending capacity of the joint. The method for optimizing the joint flexural stiffness is clarified. The results of this study can provide a theoretical basis for optimizing the design and prediciting the damage of bolted segment joints in shield tunnels.

关键词: shield tunnel     segment joint     joint structural model     failure mechanism    

Integrated management of cardiac failure: the cardiac failure clinic

null

《医学前沿(英文)》 2011年 第5卷 第1期   页码 20-25 doi: 10.1007/s11684-011-0106-1

摘要:

The prevalence of the risk factors and the risk of cardiac failure are both increasing in China. This might be the consequence of the changes of the life conditions (emigration to the urban areas, changes in the diet and life style, lack of physical exercise, etc.). The wide range of clinical presentations of cardiac failure (acute or chronic) and of therapeutic approaches (medical or surgical) makes necessary the integration within the same structure of the various experts involved in the diagnosis and the treatment of cardiac diseases. Technologic and human resources required to offer all the options represent a multifaceted commitment which should be focused optimally in dedicated centers. In these centers, collaboration should replace competition between the medical and the surgical cardiac specialists. Development of team work should permit to optimize the cost efficacy of the treatments. Most of all, such a structure will facilitate the translation of innovative therapies between the research centers and clinical facilities.

关键词: cardiac failure     cardiac transplantation     mechanical circulatory support    

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 623-642 doi: 10.1007/s11709-021-0726-8

摘要: In this study, gradual and sudden reduction methods were combined to simulate a progressive failure in notched composite plates using a macro mechanics approach. Using the presented method, a progressive failure is simulated based on a linear softening law prior to a catastrophic failure, and thereafter, sudden reduction methods are employed for modeling a progressive failure. This combination method significantly reduces the computational cost and is also capable of simultaneously predicting the first and last ply failures (LPFs) in composite plates. The proposed method is intended to predict the first ply failure (FPF), LPF, and dominant failure modes of carbon/epoxy and glass/epoxy notched composite plates. In addition, the effects of mechanical properties and different stacking sequences on the propagation of damage in notched composite plates were studied. The results of the presented method were compared with experimental data previously reported in the literature. By comparing the numerical and experimental data, it is revealed that the proposed method can accurately simulate the failure propagation in notched composite plates at a low computational cost.

关键词: progressive failure     notched composite plate     Hashin failure criterion     macro mechanics approach     finite element method    

Overview on acute-on-chronic liver failure

null

《医学前沿(英文)》 2016年 第10卷 第1期   页码 1-17 doi: 10.1007/s11684-016-0439-x

摘要:

Liver failure (LF) is defined as severe dysfunction in hepatic synthesis, detoxification, and metabolism induced by various etiologies. Clinical presentation of LF typically includes severe jaundice, coagulation disorder, hepatic encephalopathy, and ascites. LF can be classified into acute LF, acute-on-chronic LF (ACLF), and chronic LF. ACLF has been demonstrated as a distinct syndrome with unique clinical presentation and outcomes. The severity, curability, and reversibility of ACLF have attracted considerable attention. Remarkable developments in ACLF-related conception, diagnostic criteria, pathogenesis, and therapy have been achieved. However, this disease, especially its diagnostic criteria, remains controversial. In this paper, we systemically reviewed the current understanding of ACLF from its definition, etiology, pathophysiology, pathology, and clinical presentation to management by thoroughly comparing important findings between east and west countries, as well as those from other regions. We also discussed the controversies, challenges, and needs for future studies to promote the standardization and optimization of the diagnosis and treatment for ACLF.

关键词: liver failure     chronic liver failure     acute-on-chronic liver failure     diagnosis     prognosis     treatment    

Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions

Xiancheng ZHANG, Fuzhen XUAN, Shantung TU, Binshi XU, Yixiong WU

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 118-135 doi: 10.1007/s11465-011-0127-0

摘要:

The aim of this paper was to address the rolling contact fatigue (RCF) failure mechanisms of plasma-sprayed Cr3C2-NiCr coatings under different tribological conditions of contact stress. Weibull distribution plots of fatigue lives of the coated specimens at different contact stresses were obtained. The failure modes of coatings were identified on the basis of wore surface observations of the failed coatings. Results showed that the RCF failure modes can be classified into four main categories, i.e., surface abrasion, spalling, cohesive delamination, and interfacial delamination. The probabilities of the surface abrasion and spalling type failures were relatively high at low contact stress. When the coatings were subjected to abrasion and spalling type failures, the failure of the coating was depended on the microstrcture of the coating. The stress concentration near the micro-defects in the coating may be the may reason for the formation of spall. The coatings were prone to fail in delamination under higher contact stresses. However, the delamination of coating may be related to distribution of shear stress amplitude within coating. The location of maximum shear stress amplitude can be used as a key parameter to predict the initiation of subsurface cracks within coating in rolling contact.

关键词: rolling contact fatigue     coating     Weibull distribution     failure mode     mechanism    

淀粉基API胶合木胶接结构破坏模式及失效机理

时君友,徐文彪,王淑敏

《中国工程科学》 2014年 第16卷 第4期   页码 40-44

摘要:

以淀粉基水性高分子异氰酸酯(API)胶合木胶接结构为研究对象,以胶接的压缩剪切强度为评估指标,通过加速湿热老化试验对胶接结构的破坏模式和失效机理进行了研究。结果表明:胶接结构的断裂性质为韧性断裂,且随着老化时间的增加,其破坏模式为由内聚破坏向内聚破坏+界面破坏转变。在湿热老化试验前期温度对压缩剪切试样性能起主要作用,在老化后期湿度起主要作用。

关键词: 胶接结构     加速湿热老化     断裂性质     破坏模式    

Surficial stability analysis of soil slope under seepage based on a novel failure mode

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 712-726 doi: 10.1007/s11709-021-0729-5

摘要: Normally, the edge effects of surficial landslides are not considered in the infinite slope method for surficial stability analysis of soil slopes. In this study, the limit stress state and discrimination equation of an infinite slope under saturated seepage flow were analyzed based on the Mohr-Coulomb strength criterion. Therefore, a novel failure mode involving three sliding zones (upper tension zone, middle shear sliding zone, and lower compression zone) was proposed. Accordingly, based on the limit equilibrium analysis, a semi-analytical framework considering the edge effect for the surficial stability of a soil slope under downslope seepage was established. Subsequently, the new failure mode was verified via a numerical finite element analysis based on the reduced strength theory with ABAQUS and some simplified methods using SLIDE software. The results obtained by the new failure mode agree well with those obtained by the numerical analysis and traditional simplified methods, and can be efficiently used to assess the surficial stability of soil slopes under rainwater seepage. Finally, an evaluation of the infinite slope method was performed using the semi-analytical method proposed in this study. The results show that the infinite slope tends to be conservative because the edge effect is neglected, particularly when the ratio of surficial slope length to depth is relatively small.

关键词: soil slope     seepage     surficial failure mode     stress state     edge effects    

LSSVM-based approach for refining soil failure criteria and calculating safety factor of slopes

Shiguo XIAO; Shaohong LI

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 871-881 doi: 10.1007/s11709-022-0863-8

摘要: The failure criteria of practical soil mass are very complex, and have significant influence on the safety factor of slope stability. The Coulomb strength criterion and the power-law failure criterion are classically simplified. Each one has limited applicability owing to the noticeable difference between calculated predictions and actual results in some cases. In the work reported here, an analysis method based on the least square support vector machine (LSSVM), a machine learning model, is purposefully provided to establish a complex nonlinear failure criterion via iteration computation based on strength test data of the soil, which is of more extensive applicability to many problems of slope stability. In particular, three evaluation indexes including coefficient of determination, mean absolute percentage error, and mean square error indicate that fitting precision of the machine learning-based failure criterion is better than those of the linear Coulomb criterion and nonlinear power-law criterion. Based on the proposed LSSVM approach to determine the failure criterion, the limit equilibrium method can be used to calculate the safety factor of three-dimensional slope stability. Analysis of results of the safety factor of two three-dimensional homogeneous slopes shows that the maximum relative errors between the proposed approach and the linear failure criterion-based method and the power-law failure criterion-based method are about 12% and 7%, respectively.

关键词: slope stability     safety factor     failure criterion     least square support vector machine    

Progressive collapse of 2D reinforced concrete structures under sudden column removal

El Houcine MOURID, Said MAMOURI, Adnan IBRAHIMBEGOVIC

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1387-1402 doi: 10.1007/s11709-020-0645-0

摘要: Once a column in building is removed due to gas explosion, vehicle impact, terrorist attack, earthquake or any natural disaster, the loading supported by removed column transfers to neighboring structural elements. If these elements are unable to resist the supplementary loading, they continue to fail, which leads to progressive collapse of building. In this paper, an efficient strategy to model and simulate the progressive collapse of multi-story reinforced concrete structure under sudden column removal is presented. The strategy is subdivided into several connected steps including failure mechanism creation, MBS dynamic analysis and dynamic contact simulation, the latter is solved by using conserving/decaying scheme to handle the stiff nonlinear dynamic equations. The effect of gravity loads, structure-ground contact, and structure-structure contact are accounted for as well. The main novelty in this study consists in the introduction of failure function, and the proper manner to control the mechanism creation of a frame until its total failure. Moreover, this contribution pertains to a very thorough investigation of progressive collapse of the structure under sudden column removal. The proposed methodology is applied to a six-story frame, and many different progressive collapse scenarios are investigated. The results illustrate the efficiency of the proposed strategy.

关键词: failure mechanism     MBS dynamic analysis     gravity loads     structure-ground contact     structure-structure contact     energy conserving/decaying scheme    

Study of high-strength CFRP bolted joints with failure- monitoring cone washers

Tsukasa KATSUMATA, Yoshihiro MIZUTANI, Akira TODOROKI, Ryosuke MATSUZAKI

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 272-276 doi: 10.1007/s11465-011-0231-1

摘要:

To increase the strength of carbon-fiber-reinforced plastic (CFRP) bolted joints, a method to increase the friction force between carbon-fiber-reinforced plastic members was proposed. The increase in failure load for the proposed joint was confirmed in finite-element method analyses and joint tests. Additionally, the feasibility of damage monitoring using surface strains of the cone washer was demonstrated.

关键词: composite     bolted joint     failure monitoring     finite-element method    

Analysis of stress and failure in rock specimens with closed and open flaws on the surface

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1222-1237 doi: 10.1007/s11709-021-0773-1

摘要: The influence of closed and open surface flaws on the stress distribution and failure in rock specimens is investigated. Heterogeneous finite element models are developed to simulate the compression tests on flawed rock specimens. The simulated specimens include those with closed flaws and those with open flaws on the surface. Systematic analyses are conducted to investigate the influences of the flaw inclination, friction coefficient and the confining stress on failure behavior. Numerical results show significant differences in the stress, displacement, and failure behavior of the closed and open flaws when they are subjected to pure compression; however, their behaviors under shear and tensile loads are similar. According to the results, when compression is the dominant mode of stress applied to the flaw surface, an open flaw may play a destressing role in the rock and relocate the stress concentration and failure zones. The presented results in this article suggest that failure at the rock surface may be managed in a favorable manner by fabricating open flaws on the rock surface. The insights gained from this research can be helpful in managing failure at the boundaries of rock structures.

关键词: surface flaw     heterogeneity     circular hole     numerical modeling     relative displacement    

Experimental study on the progressive failure and its anchoring effect of weak-broken rock vertical slope

Hehua ZHU, Qianwei XU, Wenqi DING, Feng HUANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 208-224 doi: 10.1007/s11709-011-0111-0

摘要: To improve the understanding on the failure behavior and its anchoring effect of weak-broken rock slope, the rock of grade IV according to China is taken as reference prototype, and a series of model tests were carried out in laboratory. These tests can be divided into two categories, that is, with bolt reinforcement and without bolt reinforcement. In which, the stability of slope reinforced with different bolt diameter, different anchor length and different space are studied. The test results show that the collapse of slope is the combination of tension failure at the top and the compression-shearing failure at the bottom of the slope, and its failure process presents progressive characteristics. The contributions of bolt reinforcement are mainly reflected by the aspects of shear resistance, crack resistance and anti-extension. The reinforcement of blot not only can improve the vertical bearing capacity before failure, but also can reduce the vertical settlement and allow greater lateral rock wall deformation; what is more, the stress concentration degree in rock mass can be dispersed, which do help to improve the stability of slope rock mass.

关键词: progressive failure     weak-broken rock     slope     model test     bolt    

Stability analysis of slopes with planar failure using variational calculus and numerical methods

Norly BELANDRIA, Roberto ÚCAR, Francisco M. LEÓN, Ferri HASSANI

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1262-1273 doi: 10.1007/s11709-020-0657-9

摘要: This study investigates the technique of variational calculus applied to estimate the slope stability considering the mechanism of planar failure. The critical plane failure surface should be determined because it theoretically indicates the most unfavorable plane to be considered when stabilizing a slope to rectify the instability generated by several statistically possible planes. This generates integrals that can be solved by numerical methods, such as the Newton Cotes and the finite differences methods. Additionally, a system of nonlinear equations is obtained and solved. The surface of the critical planar failure is determined by applying the condition of transversality in mobile boundaries, for which various examples are provided. The number of slices is varied in one of the examples, while the surface of the critical planar failure is determined in the others. Results are compared using analytical methods through axis rotations. All the results obtained by considering normal stress, safety factors, and critical planar failure are nearly the same; however, in this research, a study is carried out for “ ” number of slices using programming methods. Sub-routines are important because they can be applied in slopes with different geometry, surcharge, interstitial pressure, and pseudo-static load.

关键词: slopes stability     planar failure     variational calculus     numerical methods    

标题 作者 时间 类型 操作

A study on bearing characteristic and failure mechanism of thin-walled structure of a prefabricated subway

Lianjin TAO; Cheng SHI; Peng DING; Sicheng LI; Shang WU; Yan BAO

期刊论文

Bending failure performance of a shield tunnel segment based on full-scale test and numerical analysis

期刊论文

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield tunnels

期刊论文

Integrated management of cardiac failure: the cardiac failure clinic

null

期刊论文

Progressive failure analysis of notched composite plate by utilizing macro mechanics approach

期刊论文

Overview on acute-on-chronic liver failure

null

期刊论文

Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions

Xiancheng ZHANG, Fuzhen XUAN, Shantung TU, Binshi XU, Yixiong WU

期刊论文

淀粉基API胶合木胶接结构破坏模式及失效机理

时君友,徐文彪,王淑敏

期刊论文

Surficial stability analysis of soil slope under seepage based on a novel failure mode

期刊论文

LSSVM-based approach for refining soil failure criteria and calculating safety factor of slopes

Shiguo XIAO; Shaohong LI

期刊论文

Progressive collapse of 2D reinforced concrete structures under sudden column removal

El Houcine MOURID, Said MAMOURI, Adnan IBRAHIMBEGOVIC

期刊论文

Study of high-strength CFRP bolted joints with failure- monitoring cone washers

Tsukasa KATSUMATA, Yoshihiro MIZUTANI, Akira TODOROKI, Ryosuke MATSUZAKI

期刊论文

Analysis of stress and failure in rock specimens with closed and open flaws on the surface

期刊论文

Experimental study on the progressive failure and its anchoring effect of weak-broken rock vertical slope

Hehua ZHU, Qianwei XU, Wenqi DING, Feng HUANG

期刊论文

Stability analysis of slopes with planar failure using variational calculus and numerical methods

Norly BELANDRIA, Roberto ÚCAR, Francisco M. LEÓN, Ferri HASSANI

期刊论文